Skip to main content

Функции плазматической мембраны в клетке. Клеточная мембрана за что отвечает


Плазматическая мембрана - это... Что такое Плазматическая мембрана?

У этого термина существуют и другие значения, см. Мембрана Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии — гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны — молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны — цепочки олигосахаридов, формирующие гликокаликс

Кле́точная мембра́на (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Функции биомембран

  • барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная — некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетке воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

  • маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Ссылки

  • Bruce Alberts, et al. Molecular Biology Of The Cell. — 5th ed. — New York: Garland Science, 2007. — ISBN 0-8153-3218-1 — учебник по молекулярной биологии на англ. языке
  • Рубин А.Б. Биофизика, учебник в 2 тт.. — 3-е издание, исправленное и дополненное. — Москва: издательство Московского университета, 2004. — ISBN 5-211-06109-8
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). — 1-е издание. — Москва: Мир, 1997. — ISBN 5-03-002419-0
  • Иванов В.Г., Берестовский Т.Н. Липидный бислой биологических мембран. — Москва: Наука, 1982.
  • Антонов В.Ф., Смирнова Е.Н., Шевченко Е.В. Липидные мембраны при фазовых переходах. — Москва: Наука, 1994.

См. также

 

Wikimedia Foundation. 2010.

dic.academic.ru

Функции плазматической мембраны в клетке

Плазматическая мембрана – липидный бислой со встроенными в его толщу белками, ионными каналами и рецепторными молекулами. Это механический барьер, который отделяет цитоплазму клетки от околоклеточного пространства, одновременно являясь единственной связью с наружной средой. А потому плазмолемма является одной из важнейших структур клетки, а ее функции позволяют ей существовать и взаимодействовать с другими клеточными группами.

Общее представление о функциях цитолеммы

Плазматическая мембрана в том виде, в котором она присутствует в животной клетке, характерна для множества организмов из разных царств. Бактерии и простейшие, чьи организмы представлены одной-единственной клеткой, имеют цитоплазматическую мембрану. А животные, грибы и растения как многоклеточные организмы не утратили ее в процессе эволюции. Однако у разных царств живых организмов цитолемма несколько различается, хотя функции ее все равно одинаковы. Их можно разделить на три группы: на разграничительные, транспортные и коммуникативные.

К группе разграничительных функций относится механическая защита клетки, поддержание ее формы, ограждение от внеклеточной среды. Транспортную группу функций мембрана играет за счет наличия специфических белков, ионных каналов и переносчиков определенных веществ. К коммуникативным функциям цитолеммы стоит отнести рецепторную. На поверхности мембраны существует совокупность рецепторных комплексов, посредством которых клетка участвует в механизмах гуморальной передачи информации. Однако важно еще и то, что плазмолемма окружает не только клетку, но и некоторые ее мембранные органеллы. В них она играет такую же роль, как в случае с целой клеткой.

Барьерная функция

Барьерные функции плазматической мембраны множественные. Она защищает внутреннюю среду клетки со сложившейся концентрацией химических веществ от ее изменения. В растворах происходит процесс диффузии, то есть самостоятельного уравнивания концентрации между средами с разным содержанием в них определенных веществ. Плазмолемма как раз блокирует диффузию путем недопущения тока жидкости и ионов в любых направлениях. Таким образом, мембрана ограничивает цитоплазму с определенной концентрацией электролитов от околоклеточной среды.

Второе проявление барьерной функции плазматической мембраны – это защита от сильных кислых и сильных щелочных сред. Плазмолемма построена таким образом, что гидрофобные концы липидных молекул обращены наружу. Потому она зачастую разграничивает внутриклеточную и внеклеточную среды с разными показателями рН. Это необходимо для клеточной жизнедеятельности.

Барьерная функция мембран органелл

Барьерные функции плазматической мембраны различны и потому, что зависят от места ее расположения. В частности кариолемма, то есть липидный бислой ядра, защищает его от механических повреждений и разделяет ядерную среду от цитоплазматической. Причем считается, что кариолемма неразрывно связана с мембраной эндоплазматической сети. Потому вся система рассматривается едино как хранилище наследственной информации, белок синтезирующая система и кластер посттрансляционной модификации белковых молекул. Мембрана эндоплазматических сетей необходима для поддержания формы транспортных внутриклеточных каналов, по которым перемещаются белковые, липидные и углеводные молекулы.

Митохондриальная мембрана защищает митохондрии, а пластидная – хлоропласты. Лизосомальная мембрана также играет роль барьера: внутри лизосомы агрессивная среда рН и активные формы кислорода, способные повредить структуры внутри клетки, если они туда проникнут. Мембрана же является универсальным барьером, одновременно разрешающим лизосомам «переваривать» твердые частицы и ограничивающим место действия ферментов.

Механическая функция плазмолеммы

Механические функции плазматической мембраны также неоднородны. Во-первых, плазмолемма поддерживает клеточную форму. Во-вторых, она ограничивает деформируемость клетки, однако не препятствует изменению формы и текучести. При этом укрепление мембраны также возможно. Это происходит за счет образования клеточной стенки протистами, бактериями, растениями и грибами. У животных, в том числе у человеческого вида, клеточная стенка наиболее простая и представлена лишь гликокаликсом.

У бактерий она гликопротеидная, у растений – целлюлозная, у грибов – хитиновая. Диатомовые водоросли и вовсе встраивают в свою клеточную стенку кремнезем (оксид кремния), что значительно увеличивает прочность и механическую стойкость клетки. Причем каждому организму клеточная стенка нужна именно для этого. А сама плазмолемма имеет намного меньшую прочность, чем слой протеогликанов, целлюлозы или хитина. В том, что цитолемма играет механическую роль, сомневаться не приходится.

Также механические функции плазматической мембраны позволяют митохондриям, хлоропластам, лизосомам, ядру и эндоплазматической сети функционировать внутри клетки и защищаться от подпороговых повреждений. Это характерно для любой клетки, имеющей данные мембранные органеллы. Более того, плазматическая мембрана имеет цитоплазматические выросты, посредством которых создаются межклеточные контакты. Это пример реализации механической функции плазматической мембраны. Защитная роль мембраны обеспечивается еще и за счет естественной резистентности и текучести липидного бислоя.

Коммуникативная функция цитоплазматической мембраны

К числу коммуникативных функций стоит отнести транспорт и рецепцию. Эти оба качества характерны именно для плазматической мембраны и кариолеммы. Мембрана органелл не всегда имеет рецепторы или пронизана транспортными каналами, а у кариолеммы и цитолеммы эти образования имеются. Именно посредством их осуществляется реализация данных коммуникативных функций.

Транспорт реализуется двумя возможными механизмами: с затратой энергии, то есть активным путем, и без затрат, простой диффузией. Однако клетка может транспортировать вещества и путем фагоцитоза или пиноцитоза. Это реализуется путем захвата облака жидкости или твердой частицы выпячиваниями цитоплазмы. Тогда клетка как будто руками захватывает частицу или каплю жидкости, втягивая ее внутрь и образуя вокруг нее цитоплазматический слой.

Активный транспорт, диффузия

Активный транспорт – это пример избирательного поглощения электролитов или питательных веществ. Посредством специфических каналов, представленных белковыми молекулами, состоящими из нескольких субъединиц, вещество или гидратированный ион проникает в цитоплазму. Ионы меняют потенциалы, а питательные вещества встраиваются в метаболические цепи. И все эти функции плазматической мембраны в клетке активно способствуют ее росту и развитию.

Липидорастворимость

Высокодифференцированные клетки, к примеру, нервная, эндокринная или мышечная, используют данные ионные каналы для генерации потенциалов покоя и действия. Он образуется за счет осмотической и электрохимической разницы, а ткани получают способность сокращаться, генерировать или проводить импульс, отвечать на сигналы или передавать их. Это важный механизм обмена информацией между клетками, который лежит в основе нервной регуляции функций всего организма. Эти функции плазматической мембраны животной клетки обеспечивают регуляцию жизнедеятельности, защиты и передвижения всего организма.

Некоторые вещества и вовсе могут проникать сквозь мембрану, однако это характерно только для молекул липофильных жирорастворимых молекул. Они попросту растворяются в бислое мембраны, легко попадая в цитоплазму. Такой механизм транспорта характерен для гормонов стероидов. А гормоны пептидной структуры неспособны проникать через мембрану, хотя также передают информацию клетке. Это достигается благодаря наличию на поверхности плазмолеммы рецепторных (интегральных) молекул. Связанные с ними биохимические механизмы передачи сигнала к ядру вместе с механизмом прямого проникновения липидных веществ через мембрану составляют более простую систему гуморальной регуляции. И все эти функции интегральных белков плазматической мембраны нужны не только одной клетке, а всему организму.

Таблица функций цитоплазматической мембраны

Наиболее наглядный способ выделить функции плазматической мембраны – таблица, в которой указана ее биологическая роль для клетки в целом.

Структура

Функция

Биологическая роль

Цитоплазматическая мембрана в виде липидного бислоя с расположенными кнаружи гидрофобными концами, оснащенная рецепторными комплексами из интегральных и поверхностных белков

Механическая

Поддерживает клеточную форму, защищает от механических подпороговых воздействий, сохраняет клеточную целостность

Транспортная

Осуществляет транспорт капель жидкости, твердых частиц, макромолекул и гидратированных ионов в клетку с затратой или без затрат энергии

Рецепторная

Имеет на своей поверхности рецепторные молекулы, которые служат для передачи информации к ядру

Адгезивная

За счет выпячиваний цитоплазмы соседние клетки образуют контакты между собой

Электрогенная

Обеспечивает условия для генерации потенциала действия и потенциала покоя возбудимых тканей

В данной таблице наглядно показано, какие функции выполняет плазматическая мембрана. Однако эти роли играет только клеточная оболочка, то есть липидный бислой, окружающий всю клетку. Внутри нее есть и органеллы, которые также имеют мембраны. Их роли следует выразить в виде схемы.

Функции плазматической мембраны: схема

В клетке наличием мембран отличаются следующие органеллы: ядро, шероховатый и гладкий эндоплазматический ретикулум, комплекс Гольджи, митохондрия, хлоропласты, лизосомы. В каждой из данных органелл мембрана играет важнейшую роль. Рассмотреть ее можно на примере табличной схемы.

Органелла и мембрана

Функция

Биологическая роль

Ядро, ядерная мембрана

Механическая

Механические функции плазматической мембраны цитоплазмы ядра позволяют поддерживать его форму, предотвращать появление структурных повреждений

Барьерная

Разделение нуклеоплазмы и цитоплазмы

Транспортная

Имеет транспортные поры для выхода рибосом и информационной РНК из ядра и поступления внутрь питательных веществ, аминокислот и азотистых оснований

Митохондрия, митохондриальная мембрана

Механическая

Поддержание формы митохондрии, препятствие механическим повреждениям

Транспортная

Через мембрану передаются ионы и энергетические субстраты

Электрогенная

Обеспечивает генерацию трансмембранного потенциала, что лежит в основе выработки энергии в клетке

Хлоропласты, мембрана пластид

Механическая

Поддерживает форму пластид, предупреждает их механическое повреждение

Транспортная

Обеспечивает транспорт веществ

Эндоплазматическая сеть, мембрана сети

Механическая и средообразующая

Обеспечивает наличие полости, где протекают процессы синтеза белков и их посттрансляционной модификации

Аппарат Гольджи, мембрана везикул и цистерн

Механическая и средообразующая

Роль см. выше

Лизосомы, лизосомальная мембрана

Механическая

Барьерная

Поддержание формы лизосомы, предотвращение механических повреждений и выхода ферментов в цитоплазму, ограничение ее от литических комплексов

Мембраны животной клетки

Таковы функции плазматической мембраны в клетке, где она играет важную роль для каждой органеллы. Причем ряд функций следует объединить в одну – в защитную. В частности барьерная и механическая функции объединены в защитную. Более того, функции плазматической мембраны в растительной клетке практически идентичны таковым в животной и бактериальной.

Животная клетка является наиболее сложной и высокодифференцированной. Здесь располагается гораздо больше интегральных, полуинтегральных и поверхностных белков. В целом у многоклеточных организмов структура мембраны всегда сложнее, чем у одноклеточных. И то, какие функции выполняет плазматическая мембрана конкретной клетки, определяет, будет ли она отнесена к эпителиальной, соединительной или возбудимой ткани.

fb.ru

Мембрана клетки - это... Что такое Мембрана клетки?

У этого термина существуют и другие значения, см. Мембрана Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии — гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны — молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны — цепочки олигосахаридов, формирующие гликокаликс

Кле́точная мембра́на (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Функции биомембран

  • барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная — некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетке воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

  • маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Ссылки

  • Bruce Alberts, et al. Molecular Biology Of The Cell. — 5th ed. — New York: Garland Science, 2007. — ISBN 0-8153-3218-1 — учебник по молекулярной биологии на англ. языке
  • Рубин А.Б. Биофизика, учебник в 2 тт.. — 3-е издание, исправленное и дополненное. — Москва: издательство Московского университета, 2004. — ISBN 5-211-06109-8
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). — 1-е издание. — Москва: Мир, 1997. — ISBN 5-03-002419-0
  • Иванов В.Г., Берестовский Т.Н. Липидный бислой биологических мембран. — Москва: Наука, 1982.
  • Антонов В.Ф., Смирнова Е.Н., Шевченко Е.В. Липидные мембраны при фазовых переходах. — Москва: Наука, 1994.

См. также

 

Wikimedia Foundation. 2010.

dic.academic.ru

Характеристика клеточной мембраны (нейролеммы)

Клеточная мембрана – нейролемма – представляет собой тонкую (6 нм) липопротеиновую пластинку, содержание липидов в которой составляет около 40%, белков – около 60%. Изнутри нейролемма  выстлана тонким, более плотным слоем гиалоплазмы. На внешней поверхности мембраны имеется небольшое количество углеводов, молекулы которых соединены либо с белками ( гликопротеиды ), либо с липидами ( гликолипиды )  и образуют гликокаликс. Углеводы участвуют в процессах  рецепции биологически активных веществ, реакциях иммунитета.

Структурную основу клеточной мембраны  - матрикс – составляет бимолекулярный слой фосфолипидов, являющихся  барьером для заряженных частиц и молекул водорастворимых веществ. Липиды обеспечивают высокое электрическое сопротивление мембраны.

Молекулы фосфолипидов мембраны состоят из двух частей: одна  из них несет заряд и гидрофильна, другая – не заряжена и гидрофобна.  Это определяет способность липидов самопроизвольно образовывать двухслойные мембранные структуры под влиянием собственных зарядов. Заряженные гидрофильные участки одних молекул  фосфолипидов  направлены внутрь, а других – наружу. В толще мембраны молекулы фосфолипидов  взаимодействуют незаряженными гидрофобными участками. В липидном слое клеточных мембран находится много холестерина.

Молекулы белков встроены в фосфолипидный  матрикс клеточной мембраны. Все белки нейролеммы можно разделить на

а) структурные белки;

б) белки-переносчики;

в) ферменты;

г) каналообразующие белки;

д) ионные насосы;

е) специфические рецепторы.

Один и тот же белок может быть рецептором, ферментом и насосом. Многие мембранные белки состоят из двух  частей: заряженной и незаряженной. Незаряженные участки белков погружены в липидный слой, не несущий заряда. Заряженные участки белков взаимодействуют с заряженными участками липидов, что является важным фактором, определяющим взаиморасположение структурных элементов клеточной мембраны и ее прочность. Белки, пронизывающие липидный слой, крепко связаны с молекулами фосфолипидов и носят название интегральных белков. Белки, которые располагаются на поверхности мембраны (как снаружи, так и изнутри), называются периферическими белками.

Клеточная мембрана нейрона имеет отрицательный поверхностный заряд, который создается выступающей из мембраны углеводной частью гликолипидов, фосфолипидов и гликопротеидов.

Мембрана обладает текучестью, то есть ее части могут перемещаться из одного участка на другой.

Клеточная мембрана обладает избирательной проницаемостью, то есть одни вещества пропускает, другие не  пропускает. В частности нейролемма легко проницаема для жирорастворимых веществ. Анионы органических кислот не проходят через мембрану, но имеют каналы, избирательно пропускающие ионы К, Na, Са, Cl. При действии нервных импульсов проницаемость мембраны нейрона для различных ионов изменяется, это обеспечивает движение ионов согласно концентрационному и электрическому градиентам,  что выражается в возникновении возбуждающих и тормозных потенциалов. Проницаемость нейролеммы под действием нервных импульсов может повышаться благодаря наличию в ней ионных управляемых каналов. Каналы образованы белковыми молекулами, встроенными в липидный матрикс. Через эти каналы могут проходить полярные молекулы.

Основные функции клеточной мембраны:

1.  Барьерная функция -  клеточная мембрана отделяет внутреннюю среду клетки от внешней, защищая, тем самым, клетку от воздействия вредных факторов и поддерживая постоянный состав клетки.

2.  Функция восприятия изменений внутренней среды (рецепторная функция) – клеточная мембрана обладает большим набором различных рецепторов, обладающих специфической чувствительностью к различным агентам: гормонам, медиаторам, антигенам, химическим и физическим раздражителям. Рецепторы отвечают за взаимное распознавание клеток, развитие иммунитета. Рецепторами могут служить гликопротеиды и гликопептиды мембраны. Возбужденный рецептор активирует G-белок мембраны, который с помощью фермента-предшественника, расположенного на внутренней стороне мембраны, активирует вторичный посредник, реализующий эффект от раздражителя, подействовавшего на рецептор. Восприятие химических и физических раздражителей у возбудимых клеток осуществляется с помощью трансформации энергии раздражения в нервный импульс.

3.  Функция создания электрического заряда  клетки -  каждая клетка имеет мембранный потенциал - разность концентрации заряженных ионов на внутренней и внешней  поверхности мембраны. Благодаря наличию мембранного потенциала ( МП ) возбудимые  клетки могут генерировать  потенциал действия (возбуждение), и передавать его на другую клетку. Распространение возбуждения обеспечивает быструю связь возбудимых клеток между собой и с эффекторными клетками. МП нейрона варьирует от 60 до 80 мВ, МП клеток нейроглии равен 90 мВ. 

4.  Функция передачи сигналов от одной клетки к другой – осуществляется с помощью синапсов, образованных в области контакта нейронов друг с другом.

5.  Транспортная функция – определяет состав веществ в клетке. Клеточная мембрана осуществляет тонкую регуляцию содержания в цитоплазме ионов и молекул. Благодаря транспорту частиц формируется состав внутриклеточной среды, наиболее благоприятной для оптимального протекания метаболических реакций. Транспорт частиц через клеточную мембрану нейрона обеспечивает:

    1) поступление в клетку различных веществ, необходимых для синтеза клеточных структур и выработки энергии;

    2) выделение клетками продуктов ее обмена и биологически активных веществ – нейрогормонов, нейромедиаторов;

    3) создание электрических зарядов клеток, возникновение и распространение возбуждения.

Первичный транспорт веществ через клеточную мембрану

Первичный транспорт – это такой транспорт, при котором энергия расходуется непосредственно на перенос частиц. Он включает, во-первых,  перенос отдельных ионов вопреки концентрационному и электрическому градиентам с помощью специальных ионных насосов, во-вторых, эндоцитоз, экзоцитоз и трансцитоз.

► 1.  Транспорт  веществ с помощью помп. Насосы представляют собой белковые молекулы, обладающие свойствами переносчика и АТФазной активностью. Непосредственным источником энергии является АТФ. Существуют три основных вида насосов: натрий-калиевый, кальциевый и водородный. Предполагают, что существуют еще хлорный насос. Помпы  локализуются на клеточных мембранах или мембранах органелл клеток. Все насосы обладают специфичностью, то есть,  способны переносить только один или два определенных  иона.

  ·   Натрий-калиевый насос (Na+/K+-АТФаза)– это интегральный белок клеточной мембраны, обладающий свойствами фермента, то есть сам переносчик обеспечивает расщепление АТФ и освобождение энергии, которую сам же и использует. Он имеется на мембранах всех клеток и создает характерный признак живого – градиент концентрации Na+ K+ внутри и вне клетки, который обеспечивает формирование МП и вторичный транспорт веществ.  Главными активаторами насоса являются гормоны альдостерон и тироксин. Ингибирует насос недостаток энергии – кислородное голодание. Блокаторами  насоса  являются строфантины.

  ·   Кальциевый насос локализуется в эндоплазматичеком ретикулуме и клеточной мембране, он обеспечивает транспорт Са+ в клетке. Насос строго контролирует содержание Са+  в клетке, поскольку изменение содержания Са+  нарушает ее функционирование. Насос переносит Са+ либо во внеклеточную среду, либо в цистерны ретикулума и митохондрии.

  ·   Протонный насос   работает  в митохондриях нейрона.

  ·   Хлорный насос работает в мембране, ретикулуме и митохондриях.

Постоянная работа помп необходима для поддержания концентрационных градиентов ионов, связанного с ними электрического заряда клетки, движения воды и незаряженных частиц в клетку и из клетки. Совокупность этих процессов обеспечивает жизнедеятельность нейрона. В результате разной проницаемости клеточной мембраны для отдельных ионов и постоянной работы ионных насосов концентрации различных ионов внутри клетки и снаружи нее неодинакова. Поскольку ионы являются заряженными частицами, то существует электрический заряд нейрона: внутри он заряжен отрицательно, то есть количество отрицательно заряженных частиц преобладает, а снаружи положительно, так как положительно заряженных частиц здесь больше. Ионы калия находятся преимущественно в клетке, а ионы натрия и хлора – во внеклеточной жидкости. Внутри клетки имеются также крупномолекулярные анионы, в основном белкового происхождения. Натрий-калиевый насос способен транспортировать еще  глюкозу и аминокислоты.

Механизм работы ионных насосов заключается в следующем:  Na+/К+ -насос (молекула интегрального белка) переносит за один цикл 3Na+ из клетки и 2К+ в клетку (антипорт), это осуществляется в результате конформации молекулы белка  в форму Е1 или Е2. Молекула имеет активный участок, который связывает либо Na+, либо К+. При конформации Е1 активная часть белковой молекулы обращена внутрь  клетки и обладает сродством к Na+, который присоединяется к белку. Вследствие этого  активируется его АТФаза, обеспечивающая гидролиз АТФ и высвобождение энергии. Последняя обеспечивает изменение конформации молекулы белка: она превращается в форму Е2, вследствие чего ее активный участок будет обращен наружу клеточной мембраны. Теперь белок теряет сродство к Na+, который отщепляется от него, а белок-помпа  приобретает сродство к К+ и соединяется с ним. Это снова ведет к изменению конформации белка: форма Е2 переходит в форму Е1. Переносчик теряет сродство к иону К+, который отщепляется, а белок снова меняет свою конформацию. И цикл повторяется. Насос является электронным, поскольку за один цикл выводится из клетки три иона Na+, а в клетку возвращаются два иона К+.  Энергия расходуется только на перенос Na+. На обеспечение одного цикла работы Na+/К+ - помпы расходуется одна молекула АТФ.

Подобным же образом работают и другие насосы. Отличие только составляют ионы, которые переносятся помпой.

► 2.  Микровезикулярный транспорт. К этому виду транспорта относят эндоцитох, экзоцитоз и трансцитоз.  Эндоцитоз – это перенос частиц в клетку. Эндоцитоз – перенос частиц из клетки. Трансцитоз – перенос веществ через клетку, который для нейрона не характерен. С помощью этих процессов переносятся крупномолекулярные белки, полисахариды, нуклеиновые кислоты.

При эндоцитозе клеточная мембрана образует впячивания  внутрь клетки, куда захватываются частицы из вне.  Эти впячивания,  отшнуровываясь внутри клетки, образуют пузырьки. Последние сливаются с лизосомами, образуя вторичные лизосомы, где содержимое подвергается гидролизу.

Экзоцитоз – процесс обратный эндоцитозу.  Экзоцитозные пузырьки образуются в аппарате Гольджи. В пузырьки упаковываются  белки, образовавшиеся в рибосомах. Пузырьки транспортируются с помощью сократительного аппарата клетки к клеточной мембране, сливаются с ней и их содержимое выделяется во внешнюю среду. Энергия АТФ в обоих случаях расходуется на деятельность сократительного аппарата клетки.

Вторичный транспорт веществ через нейролемму

Вторичный транспорт – это переход различных частиц и молекул воды за счет ранее запасенной энергии (потенциальной). Потенциальная энергия создается в виде электрического и концентрационного градиентов, гидростатического давления, что обеспечивает транспорт веществ через клеточную мембрану нейрона и кровеносных сосудов. К вторичному транспорту относятся  все виды диффузии – простая, облегченная и осмос.

Диффузия. Согласно законам диффузии, частицы перемещаются из области с высокой концентрацией в область с низкой концентрацией. Частицы с одноименными электрическими зарядами отталкиваются, с разноименными – притягиваются друг к другу. Направление диффузии определяется взаимодействием электрического и концентрационного (химического) градиентов. Если частицы не заряжены, то направление их диффузии определяется только градиентом концентрации. Скорость диффузии зависит от проницаемости мембраны, а также от градиента концентрации незаряженных частиц, и от градиента электрического и химического для заряженных частиц. Направления действия электрического и химического градиентов могут не совпадать. Тогда переход ионов в клетку обеспечивается химическим градиентом вопреки электрическому. Совокупность химического и электрического градиентов называют электрохимическим градиентом. Различают следующие виды диффузии:

1.  Простая диффузия осуществляется либо непосредственно через липидный бислой, либо через каналы. При этом заряженные частицы движутся согласно электрохимическому градиенту, а не заряженные – согласно химическому градиенту. А) Через липидный бислой проходят жирорастворимые частицы. Если они находятся в гидратной оболочке по одну сторону мембраны, то могут внедряться в липидную оболочку благодаря тепловому движению, но только после освобождения от оболочки. Частицы неэлектролиты обычно легко освобождаются от гидратной оболочки. С уменьшением молекулярной массы способность перехода частиц через мембрану возрастает. В) По каналам могут проходить различные частицы, причем скорость перемещения очень высока. Каналы заполнены водой, и кроме ионов через них могут проходить малые молекулы неэлектролитов и заряженные молекулы. Скорость простой диффузии определяется электрохимическим градиентом и проницаемостью мембраны для данного вещества. С течением времени скорость простой диффузии изменяется мало. С помощью простой диффузии осуществляется транспорт молекул алкоголя, кислорода, тироксина, углекислого газа, мочевины, лекарственных препаратов. Этот процесс происходит слишком медленно и плохо контролируется.

2.  Облегченная диффузия осуществляется  согласно химическому градиенту, но она обеспечивает перенос веществ, способных образовывать комплексы с молекулами-переносчиками. Переносчик – белковая молекула мембраны - свободно совершает челночные движения  с одной стороны мембраны на другую, либо встраиваются в мембрану, образуя канал. Этот транспорт осуществляется  очень быстро. Движущей силой является градиент транспортируемого вещества. С помощью простой диффузии через мембрану  могут проходить такие простые вещества как глюкоза, а сахара и аминокислоты проходят только при образовании канала. Облегченная диффузия, в отличие от простой диффузии, не может идти постоянно, так как в данном случае возможно явление насыщения, то есть перенос замедляется или совсем прекращается, если все переносчики заняты.

3.  Осмос – частный случай диффузии. Осмос – это движение воды через полупроницаемую мембрану в область с большей концентрацией частиц, то есть с большим осмотическим давлением. Осмотическое давление – это диффузное давление, обеспечивающее движение растворителя через полупроницаемую мембрану. Осмос продолжается до выравнивания осмотического давления по обе стороны полупроницаемой мембраны или выравнивания осмотического давления и гидростатического противодавления. При подавлении метаболизма клетки быстро набухают, так как внутри клетки осмотическое давление сохраняется повышенным. Вода поступает в клетку через водные каналы и временные поры, которые образуются между молекулами липидов и при смещении белковых молекул.  Через водные каналы могут проходить малые незаряженные молекулы кислорода, углекислого газа, этанола, мочевины.

Механизмы вторичного транспорта

I. Натриевый механизм: энергия затрачивается на создание градиента натрия. Различают два варианта данного механизма транспорта.

 Вариант 1. При этом варианте направление движения транспортируемого вещества совпадает с направлением движения натрия согласно его электрохимическому градиенту (симпорт). Глюкоза соединяется с белком-переносчиком, который соединяется с Na+, а Na+, согласно концентрационному и электрическому градиентам диффундирует в клетку и несет с собой глюкозу. В клетке комплекс распадается, Na+ выводится помпой с непосредственной затратой энергии из клетки в интерстиций вопреки электрохимическому градиенту. Транспорт веществ с помощью натрия осуществляется согласно законам диффузии. Транспортируемое вещество при этом может поступать в клетку вопреки собственному химическому градиенту. Движущей силой является электрохимический градиент Na+. Вместе с Na+ в клетку поступает глюкоза, даже если ее концентрация в клетке больше, чем в среде, и если, конечно, электрохимический градиент Na+ превосходит химический градиент глюкозы. С помощью этого варианта обеспечивается реабсорбция медиатора в пресинаптическую терминаль из синаптической щели, а также транспорт глюкозы.

Вариант 2. При втором варианте натриевого механизма перемещение транспортируемых частиц направлено в противоположную сторону движения Na+ (антипорт). С помощью этого обменного механизма регулируется содержание Са2+ в клетке и рН внутри клетки за счет выведения Н-иона в обмен на внеклеточный Na+. Хотя внутриклеточная концентрация Са2+ на несколько порядков ниже внеклеточной, Са2+ выводится из клетки в обмен на поступающий в нее Na+ и противоположно направленные потоки этих ионов сопряжены друг с другом. Этот процесс обеспечивается натриевого химического градиента переносчиком. Переносчик может транспортировать Са2+ и Н+ вопреки их электрическим и химическим градиентам только в том случае, когда сам переносчик имеет собственный градиент: его концентрация на внешней стороне мембраны больше, чем на внутренней.

II. Транспорт веществ из кровеносных сосудов в интерстиций ЦНС осуществляется с помощью диффузии, осмоса и фильтрации, то есть перехода раствора через полупроницаемую мембрану (стенку сосуда) под действием градиента гидростатического давления между жидкостями по обе стороны мембраны. Градиент гидростатического давления создается либо деятельностью сердца, либо гладкой мускулатурой желудочно-кишечного тракта и мышечного пресса.

Ионные каналы

Ионные каналы образованы белками, они весьма разнообразны по устройству и механизму действия. Классификация ионных каналов осуществляется по нескольким признакам.

  ·   По возможности управления различают управляемые и неуправляемые каналы. Через неуправляемые каналы ионы перемещаются постоянно, но медленно. Через управляемые каналы ионы могут двигаться и быстро и медленно. Управляемые каналы имеют ворота с механизмами управления. Потенциал действия (ПД) в нейроне возникает в основном вследствие активации быстрых Na+ и К+ -каналов. Через неуправляемые каналы и быстрые управляемые каналы ионы  перемещаются согласно электрохимичекому градиенту. 

  ·   В зависимости от стимула, активирующего или инактивирующего управляемые ионные каналы, в нейронах ЦНС различают потенциалчувствительные и хемочувствительные каналы. Хемочувствительные каналы открываются в результате конформационных изменений рецепторного комплекса. Ворота потенциалзависимых каналов открываются и закрываются при изменении величины мембранного потенциала.

  ·   В зависимости от селективности различают ионоселективные каналы, пропускающие только один ион, и каналы, не обладающие селективностью. В нейронах имеются Na+, K+, Ca2+ и Cl- -селективные каналы. Есть каналы, пропускающие несколько ионов. Такие каналы называются неселективными. Наиболее высока степень селективности у потенциалчувствительных каналов. Для одного и того же иона может существовать несколько каналов.

Наиболее важными для формирования биопотенциалов являются следующие каналы:

I. Каналы для ионов калия.

  ·   Калиевые неуправляемые каналы покоя – через них постоянно К+ выходит из клетки, что является главным фактором в формировании мембранного потенциала (МП) или потенциала покоя (ПП).

  ·   Потенциалчувствительные управляемые К+ -каналы – сравнительно медленно активируются  при возбуждении клетки в фазу деполяризации с последующим увеличением активации, что обеспечивает быстрый выход К+ из клетки и ее реполяризацию (генерация потенциала действия – ПД).

II. Каналы для ионов натрия.

  ·   Медленные неуправляемые каналы – каналы утечки, через которые Na+ постоянно диффундирует в клетку и переносит с собой другие молекулы, например, глюкозу, аминокислоты, молекулы-переносчики. Эти каналы участвуют в формировании МП и обеспечивают вторичный транспорт веществ.

  ·   Быстрые потенциалчувствительные   Na-каналы быстро активируются при уменьшении МП, что обеспечивает вход Na+ в клетку при возбуждении (восходящая часть потенциала действия - ПД). Затем эти каналы быстро инактивируются.

Устройство ионных каналов и их функционирование

Каналы имеют устье и селективный фильтр, а управляемые каналы – и воротный механизм. Каналы заполнены жидкостью, их размеры 0,3-0,8 нм. Селективность ионных каналов определяется их размером и наличием в канале заряженных частиц. Заряд частиц противоположен заряду иона, который они притягивают, что обеспечивает проход иона через канал. Через ионные каналы могут проходить и незаряженные частицы. Ионы, проходя через канал, должны избавиться от гидратной оболочки, иначе ее размеры будут больше размеров канала. Слишком маленький ион, проходя через селективный фильтр, не может отдать гидратную оболочку, поэтому он не способен пройти через канал.

Для управляемых каналов существуют свои особенности функционирования: во-первых, они отличаются  по степени селективности – наиболее  высокой степенью селективности обладают потенциалчувствительные каналы; во-вторых, у них может наблюдаться взаимное влияние друг на друга. Так, деполяризация клеточной мембраны за счет активации хемочувствительных каналов для ионов натрия обеспечивает возбуждение нейрона. В то время как активация потенциалчувствительных  каналов не влияет на функцию хемочувствительных каналов нейрона.

Ионные каналы блокируются специфическими веществами и фармакологическими препаратами. Новокаин, например, блокирует Na+-каналы, прекращая проведение возбуждения по нервным волокнам.



biofile.ru

Биологическая мембрана - это... Что такое Биологическая мембрана?

У этого термина существуют и другие значения, см. Мембрана Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» липидов, а присоединённые к ним линии — гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны — молекулы холестерола Желто-зеленые цепочки бусинок на наружной стороне мембраны — цепочки олигосахаридов, формирующие гликокаликс

Кле́точная мембра́на (или цитолемма, или плазмолемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7-8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Функции биомембран

  • барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

  • матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;
  • механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная — некоторые белки, сидящие в мембране, являются рецепторами (молекулами, при помощи которых клетке воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

  • ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

  • маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Снаружи клетка ограничена так называемой плазматической мембраной. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс-одни вещества пропускают, а другие нет. существует четыре основных механизма для поступления веществ в клетку или их из клеки наружу:диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, т.е. не требуют затрат энергии; два последних-активные процессы, связанные с потреблением энерги.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

Ссылки

  • Bruce Alberts, et al. Molecular Biology Of The Cell. — 5th ed. — New York: Garland Science, 2007. — ISBN 0-8153-3218-1 — учебник по молекулярной биологии на англ. языке
  • Рубин А.Б. Биофизика, учебник в 2 тт.. — 3-е издание, исправленное и дополненное. — Москва: издательство Московского университета, 2004. — ISBN 5-211-06109-8
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). — 1-е издание. — Москва: Мир, 1997. — ISBN 5-03-002419-0
  • Иванов В.Г., Берестовский Т.Н. Липидный бислой биологических мембран. — Москва: Наука, 1982.
  • Антонов В.Ф., Смирнова Е.Н., Шевченко Е.В. Липидные мембраны при фазовых переходах. — Москва: Наука, 1994.

См. также

 

Wikimedia Foundation. 2010.

dic.academic.ru

Клеточная мембрана — Википедия

У этого термина существуют и другие значения, см. Мембрана. Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофильным «головкам» фосфолипидов, а присоединённые к ним линии — гидрофобным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и жёлтые спирали). Жёлтые овальные точки внутри мембраны — молекулы холестерина. Жёлто-зелёные цепочки бусинок на наружной стороне мембраны — цепочки олигосахаридов, формирующие гликокаликс

Кле́точная мембра́на (также цитолемма, плазмалемма, или плазматическая мембрана) — эластическая молекулярная структура, состоящая из белков и липидов. Отделяет содержимое любой клетки от внешней среды, обеспечивая её целостность; регулирует обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определённые условия среды.

Основные сведения

Клеточная стенка, если таковая у клетки имеется (обычно есть у растительных клеток), покрывает клеточную мембрану.

Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды — фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») части. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные — наружу. Мембраны — структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет 7—8 нм.

Биологическая мембрана включает и различные белки: интегральные (пронизывающие мембрану насквозь), полуинтегральные (погружённые одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов.

Видео по теме

История исследования

В 1925 году Гортер и Грендель с помощью осмотического удара получили так называемые «тени» эритроцитов — их пустые оболочки. Тени сложили в стопку и определили площадь их поверхности. Затем с помощью ацетона выделили из оболочек липиды и определили количество липидов на единицу площади эритроцита — этого количества хватило на сплошной двойной слой. Хотя этот эксперимент привёл исследователей к правильному выводу, ими было допущено несколько грубых ошибок — во-первых, с помощью ацетона нельзя выделить абсолютно все липиды, а во-вторых, площадь поверхности была определена неправильно, по сухому весу. В данном случае минус на минус дал плюс, соотношение определяемых показателей случайно оказалось верным и был открыт липидный бислой.

Эксперименты с искусственными билипидными пленками показали, что они обладают высоким поверхностным натяжением, гораздо большим, чем в клеточных мембранах. То есть в них содержится что-то, что снижает натяжение — белки. В 1935 году Даниэлли и Доусон представили научному сообществу модель «сендвича», которая говорит о том, что в основе мембраны лежит липидный бислой, по обеим сторонам от которого находятся сплошные слои белков, внутри бислоя ничего нет. Первые электронно-микроскопические исследования 1950-х годов подтвердили эту теорию — на микрофотографиях были видны 2 электронно-плотных слоя — белковые молекулы и головки липидов и один электронно-прозрачный слой между ними — хвосты липидов. Дж. Робертсон сформулировал в 1960 году теорию унитарной биологической мембраны, в которой постулировалось трёхслойное строение всех клеточных мембран.

Но постепенно накапливались аргументы против «бутербродной модели»:

  • накапливались сведения о глобулярности плазматической мембраны;
  • оказалось, что структура мембраны при электронной микроскопии зависит от способа её фиксации;
  • плазматическая мембрана может различаться по структуре даже в одной клетке, например в головке, шейке и хвосте сперматозоида;
  • «бутербродная» модель термодинамически не выгодна — для поддержания такой структуры нужно затрачивать большое количество энергии, и протащить вещество через мембрану очень сложно;
  • количество белков, связанных с мембраной электростатически, очень небольшое, в основном белки очень тяжело выделить из мембраны, так как они погружены в неё.

Всё это привело к созданию в 1972 году С. Д. Сингером (S. Jonathan Singer) и Г. Л. Николсоном (Garth L. Nicolson) жидкостно-мозаичной модели строения мембраны. Согласно этой модели белки в мембране не образуют сплошной слой на поверхности, а делятся на интегральные, полуинтегральные и периферические. Периферические белки действительно находятся на поверхности мембраны и связаны с полярными головками мембранных липидов электростатичесткими взаимодействиями, но никогда не образуют сплошной слой. Доказательствами жидкостности мембраны служат методы FRAP, FLIP и соматическая гибридизация клеток, мозаичности — метод замораживания-скалывания, при котором на сколе мембраны видны бугорки и ямки, так как белки не расщепляются, а целиком отходят в один из слоёв мембраны.

Функции

  • Барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой[1]. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов. Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • Транспортная — через мембрану происходит транспорт веществ в клетку и из клетки[1]. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального pH и концентрации ионов, которые нужны для работы клеточных ферментов.Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортёры) и белки-каналы или путём эндоцитоза.При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации (градиент концентрации указывает направление увеличения концентрации) путём диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивает в клетку ионы калия (K+) и выкачивает из неё ионы натрия (Na+).
  • Матричная — обеспечивает определённое взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • Механическая — обеспечивает автономность клетки, её внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечении механической функции имеют клеточные стенки, а у животных — межклеточное вещество.
  • Энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки.
  • Рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
  • Ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • Осуществление генерации и проведения биопотенциалов.С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.
  • Маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединёнными к ним разветвлёнными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды, гликолипиды и холестерол. Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим — более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку.

Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются. Рядом с белками находятся аннулярные липиды — они более упорядочены, менее подвижны, имеют в составе более насыщенные жирные кислоты и выделяются из мембраны вместе с белком. Без аннулярных липидов белки мембраны не работают.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, в наружном содержатся преимущественно фосфатидилинозитол, фосфатидилхолин, сфингомиелины и гликолипиды, во внутреннем — фосфатидилсерин, фосфатидилэтаноламин и фосфатидилинозитол. Переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп) затруднён, но может происходить спонтанно, примерно раз в 6 месяцев или с помощью белков-флиппаз и скрамблазы плазматической мембраны. Если в наружном слое появляется фосфатидилсерин, это является сигналом для макрофагов о необходимости уничтожения клетки.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы, отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть, аппарат Гольджи, лизосомы, вакуоли, пероксисомы; к двумембранным — ядро, митохондрии, пластиды. Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жирные кислоты, глицерол и ионы, причем сами мембраны в известной мере активно регулируют этот процесс — одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия, осмос, активный транспорт и экзо- или эндоцитоз. Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних — активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами — интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия.

См. также

Примечания

  1. ↑ 1 2 Твердислов В. А., Яковенко Л. В. Физика биологических мембран // Школьникам о современной физике. Акустика. Теория относительности. Биофизика. - М., Просвещение, 1990. -ISBN 5-09-001323-3. - Тираж 200 000 экз. - С. 131-158

Литература

  • Антонов В. Ф., Смирнова Е. Н., Шевченко Е. В. Липидные мембраны при фазовых переходах. — М.: Наука, 1994.
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). — 1-е издание. — М.: Мир, 1997. — ISBN 5-03-002419-0.
  • Иванов В. Г., Берестовский Т. Н. Липидный бислой биологических мембран. — М.: Наука, 1982.
  • Рубин А. Б. Биофизика, учебник в 2 тт. — 3-е издание, исправленное и дополненное. — М.: издательство Московского университета, 2004. — ISBN 5-211-06109-8.
  • Bruce Alberts, et al. Molecular Biology Of The Cell. — 5th ed. — New York: Garland Science, 2007. — ISBN 0-8153-3218-1. — учебник по молекулярной биологии на английском языке

Ссылки

wikipedia.green

Клеточная мембрана

Биологическая мембрана. История создания современной модели. Клеточная мембрана 

(или цитолемма, или плазмалемма, или плазматическая мембрана) отделяет содержимое любой клетки от внешней среды, обеспечивая ее целостность; регулируют обмен между клеткой и средой; внутриклеточные мембраны разделяют клетку на специализированные замкнутые отсеки — компартменты или органеллы, в которых поддерживаются определенные условия внутриклеточной среды.

НЕОБХОДИМОСТЬ НАЛИЧИЯ МЕМБРАНЫ

Плазмалемма осуществляет ряд функций, необходимых для жизнедеятельности клетки: защищает цитоплазму от физических и химических повреждений, делает возможным контакт и взаимодействие клеток в тканях и органах, избирательно обеспечивает транспорт в клетку нужных веществ и выведение конечных продуктов обмена.

МЕМБРАННЫЕ ОРГАНЕЛЛЫ

Все содержимое клетки, за исключением ядра, носит название цитоплазмы. Она включает вязкую жидкость – цитозоль (или гиалоплазму), мембранные и немембранные компоненты. К мембранным компонентам клетки относятся ядерная мембрана, вакуолярная система (эндоплазматический ретикулум, аппарат Гольджи, лизосомы, вакуоли растительных клеток), митохондрии и пластиды. К немембранным компонентам относятся хромосомы, рибосомы, клеточный центр и центриоли, реснички и жгутики с базальными тельцами, микрофиламенты.

ИСТОРИЯ ИЗУЧЕНИЯ МЕМБРАНЫ.

Тот факт, что плазматическая мембрана, окружающая клетки, представляет собой вполне определенную структуру, был осознан в середине XIX столетия. На исходе этого столетия Овертон обратил внимание на корреляцию между скоростью, с которой небольшие молекулы проникают в растительные клетки, и их коэффициентом распределения между маслом и водой; это привело его к мысли о липидной природе мембран. В 1925 г. Гортер и Грендел предположили, что липиды в мембране эритроцитов образуют биомолекулярный слой (липидный бислой).

Эта идея возникла на основе результатов элегантного и простого эксперимента. Липиды эритроцитов экстрагировали ацетоном и затем в кювете Лэнгмюра получали из них тонкую пленку на поверхности воды. С помощью поплавка сжимали слой .Илипидных молекул на границе раздела вода-воздух до тех пор, пока этот слой не начинал оказывать сопротивление дальнейшему сжатию; это явление было объяснено образованием плотноупакованной мономолекулярной липидной пленки. Измерение площади, занимаемой липидами, и сравнение ее с площадью поверхности эритроцитов, из которых эти липиды были экстрагированы, дали соотношение 2:1. Отсюда был сделан вывод о том, что мембрана эритроцитов состоит из липидных молекул, расположенных в два слоя. В историческом плане эта работа имела большое значение, поскольку с тех пор концепция липидного бислоя как структурной основы биологических мембран стала доминирующей и на самом деле оказалась верной. Концепция бимолекулярной липидной мембраны получила дальнейшее развитие впредложенной в 1935 г. модели Дэвсона-Даниелли, или модели «сэндвича», в которой предполагалось, что белки покрывают поверхность липидного бислоя.

Это была необыкновенно удачная модель, и в течение последующих 30-ти лет многочисленные экспериментальные данные, особенно полученные с помощью дифракции рентгеновскихлучей и электронной микроскопии, полностью подтвердили ее адекватность. Однако тогда же обнаружилось, что мембраны выполняют огромное множество функций, и чтобы объяснить этот феномен, исходная модель Дэвсона-Даниелли неоднократно подвергалась модификациям. Быстрый прогресс в мембранологии, в результате которого сформировались современные представления, достигнут, в значительной мере, благодаря успехам в изучении свойств мембранных белков. Электронно-микроскопические исследования с применением метода замораживания-скалывания показали, что в мембраны встроены глобулярные частицы. Темв ременем биохимикам с помощью детергентов удалось диссоциировать мембраны до состояния функционально активных «частиц». Данные спектральных исследований указывали, что для мембранных белков характерно высокое содержание α-спиралей и что они, вероятно, образуют глобулы, а не распределены в виде монослоя на поверхности липидного бислоя. Неполярные свойства мембранных белков наводили на мысль о наличии гидрофобных контактов между белками и внутренней неполярной областью липидного бислоя. Тогда же были разработаны методы, позволившие выявить текучесть липидного бислоя. Сингер и Николсон свели воедино все эти идеи, создав жидкостно-мозаичную модель.

В рамках этой модели мембрана представляется как текучий фосфолипидный бислой, в который погружены свободно диффундирующие белки. Прежняя модель Дэвсона-Даниелли была статичной и успешно объясняла имевшиеся в то время структурные данные, полученные с довольно низким разрешением. В то же время, начиная с 1970 г. Большое внимание стало уделяться изучению динамических свойств и их взаимосвязи с мембранными функциями. В последние годы жидкостно-мозаичная модель тоже подвергается модификации, и этот процесс будет продолжаться. В частности, теперь стало ясно, что не все мембранные белки свободно диффундируют в жидком липидном бислое.

СТРОЕНИЕ МЕМБРАН.

Толщина клеточной мембраны составляет 7-8 нм.

В основе ее лежит двойной слой липидов.(Липиды-органические вещества, биологического происхождения, нерастворимые в воде, но растворимые в органических жидкостях). Липиды состоят из длинных полярных гидрофильных «головок» и длинных неполярных гидрофобных «хвостов». (Гидрофильность- способность веществ с ковалентной полярной и ионной связью взаимодействовать с водой и образовывать водородные связи, растворяться в воде или смачиваться; Гидрофобность-неспособность веществ с ковалентными неполярными связями образовывать водородные связи, следственно, растворяться в воде или смачиваться). В наибольшем количестве в

мембранах присутствуют фосфолипиды. В их говках содержится остаток фосфорной кислоты.

В

двойном слое хвосты липидных молекул обращены друг к другу, а полярные головки остаются снаружи, образуя гидрофильные поверхности. С зараженными головками благодаря электростатическим взаимодействиям соединяются белки, называемые

периферическими мембранными белками. Другие белковые молекулы могут быть погружены в слой липидов за счет взаимодействия с их неполярными хвостами. Часть белков пронизывает мембрану насквозь.

Большая часть погруженных белков мембран – ферменты.(Ферменты- обычно белковые молекулы, ускоряющие (катализирующие) химические реакции в живых системах.) В плоскости мембраны они распологаются в определенном порядке, таким образом, чтобы продукт реакции, катализируемый первым ферментом, переходил ко второму и т.д., как по конвейеру, до конечного продукта биохимической цепи реакций. Периферические белки не позволяют ферментам изменять порядок расположения их в мембране и тем самым «разорвать конвейер». Пронизывающие белки, собираясь в кружок, образуют пору, через которую некоторые соединения могут переходить с одной стороны мембраны на другую.

ПОЛЯРНОСТЬ МЕМБРАНЫ.

В мембране выделяют два конца- апикальный и базальный. Апикальный(антоним: базальный) — располагающийся у вершины.Базальный (антоним: апикальный) — располагающийся у основания.

МЕЖКЛЕТОЧНЫЕ КОНТАКТЫ.

Соединения между клетками в составе тканей и органов многоклеточных организмов могут образовываться специальными структурами, которые называются межклеточными контактами.

Изучив соединения клеток, можно обнаружить следующие основные структуры, связывающие клетки друг с другом:

1.Простой контакт встречается среди большинства прилегающих друг к другу клеток различного происхождения. Плазматические мембраны разделены узкой щелью 15-20 нм. Большинство клеток эпителия связаны с помощью простого щелевого контакта. 2.Соединение типа «замка» представляет собой впячивание плазматической мембраны одной клетки в другую. На срезе такой тип контакта напоминает плотный шов. 3.Наиболее прочными межклеточными контактами являются десмосомы, в которых мембраны соседних клеток «сшиты» пучками поперечных волокон, проникающих глубоко в их цитоплазму.

Известны примеры межклеточных контактов, структура которых предпологает использование специальных посредников- медиаторов. Наиболее хорошо изучены контакты между различными нервными клетками разной природы, например нервными и мышечными. Контакты обоих типов (их называют синапсами) обеспечивают возможность общения клеток на электрическом и химическом языке.

У растений, в отличие от животных, почти все клетки имеют клеточную стенку, лежащую кнаружи от плазмалеммы. Клеточные стенки состоят из целлюлозы-полисахарида, мономером которого является глюкоза. Жесткий каркас растения, составленный из клеточных стенок, во многих местах пронизан каналами, по которым цитоплазма одной клетки соединяется с цитоплазмой соседних клеток.

Большинство бактерий тоже окружены плотной клеточной стенкой, в состав которой входят вещества, характерные исключительно для мира бактерий.

СВОЙСТВА ЛИПИДНОГО БИСЛОЯ.

Важное свойство биологических мембран - текучесть. Все клеточные мембраны представляют собой подвижные текучие структуры: большая часть составляющих их молекул липидов и белков способна достаточно быстро перемещаться в плоскости мембран.

Липидный бислой легко прогибается и выгибается при самых самых незначительных условиях, он не может образовать опорного «скелета». Этот бислой непроницаем для заряженных ионов: они не могут протолкаться через гидрофобные хвосты фосфолипидов. Он также непроницаем для крупных молекул-белков, углеводов, нуклеиновых кислот и для гидрофильых молекул средней величины- глюкозы, аминокислот и промежуточных продуктов обмена. Однако бислой все же проницаем для воды: молекулы воды очень маленькие и в них нет настоящих зарядов проницаем он и для небольших гидрофобных молекул.

ФУНКЦИИ МЕМБРАНЫ.

1-барьерная — обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов.

2-транспортная — через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке соответствующего pH и ионной концентрации, которые нужны для работы клеточных ферментов.

Частицы, по какой-либо причине не способные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза.

При пассивном транспорте вещества пересекают липидный бислой без затрат энергии, путем диффузии. Вариантом этого механизма является облегчённая диффузия, при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.

Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза, которая активно вкачивают в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).

3-матричная — обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие;

4-механическая — обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки, а у животных — межклеточное вещество.

5-энергетическая — при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;

6-рецепторная — некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).

Например, гормоны, циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.

7-ферментативная — мембранные белки нередко являются ферментами. Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.

8-осуществление генерации и проведения биопотенциалов.

С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса.

9-маркировка клетки — на мембране есть антигены, действующие как маркеры — «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Источники( Учебник Рувинского,1993 стр.46,51,52

Учебник Беркинблита, стр.52,53,54

Учебник Беляева,стр.34-35

http://ru.wikipedia.org/wiki/%D6%CF%CC

http://temnikov.professorjournal.ru/c/document_library/get_file?p_l_id=24528&folderId=33095&name=DLFE-843.pdf

Поделитесь с Вашими друзьями:

zodorov.ru